skip to main content


Search for: All records

Creators/Authors contains: "Nickford, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A simplifying assumption in many studies of ocean carbon uptake is that the atmosphere is well‐mixed, such that zonal variations in its carbon dioxide (CO2) content can be neglected in the calculation of air‐sea fluxes. Here, we examine this assumption at various scales to quantify the errors it introduces. For global annual averages, we find that positive and negative errors effectively cancel, so the use of atmospheric zonal‐average CO2introduces reassuringly small errors in fluxes. However, for millions of square kilometers of the North Pacific and Atlantic that are downwind of the highly industrialized northern hemisphere continents, these biases average to over 6% of the annual ocean uptake and can cause errors of up to 30% on a given day. This work highlights the need to use a high quality, spatially‐resolved atmospheric CO2product for process studies and for accurate long‐term average maps of ocean carbon uptake.

     
    more » « less
  2. Abstract

    A scarcity of wintertime observations of surface ocean carbon dioxide partial pressure (pCO2) in and near the Gulf Stream creates uncertainty in the magnitude of the regional carbon sink and its controlling mechanisms. Recent observations from an Uncrewed Surface Vehicle (USV), outfitted with a payload to measure surface ocean and lower atmospherepCO2, revealed sharp gradients in oceanpCO2across the Gulf Stream. Surface oceanpCO2was lower by ∼50 μatm relative to the atmosphere in the subtropical mode water (STMW) formation region. This undersaturation combined with strong wintertime winds allowed for rapid ocean uptake of CO2, averaging −11.5 mmol m−2 day−1during the February 2019 USV mission. The unique timing of this mission revealed active STMW formation. The USV proved to be a useful tool for CO2flux quantification in the poorly observed, dynamic western boundary current environment.

     
    more » « less